Math, asked by sah825486, 1 month ago

sinA(1+tanA)+cosA(1+cotA)=secA.cosecA​

Answers

Answered by MrImpeccable
27

QUESTION:

  • Prove that: sinA(1 + tanA) + cosA(1 + cotA) = secA + cosecA

ANSWER:

To Prove:

  • sinA(1 + tanA) + cosA(1 + cotA) = secA + cosecA

Proof:

We need to prove that,

\implies\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A

Taking LHS,

\implies\sin A(1+\tan A)+\cos A(1+\cot A)

We know that,

\hookrightarrow\tan\theta=\dfrac{\sin\theta}{\cos\theta}

And,

\hookrightarrow\cot\theta=\dfrac{\cos\theta}{\sin\theta}

So,

\implies\sin A\left(1+\dfrac{\sin A}{\cos A}\right)+\cos A\left(1+\dfrac{\cos A}{\sin A}\right)

Taking LCM,

\implies\sin A\left(\dfrac{\cos A+\sin A}{\cos A}\right)+\cos A\left(\dfrac{\sin A+\cos A}{\sin A}\right)

\implies\dfrac{\sin A(\sin A+\cos A)}{\cos A}+\dfrac{\cos A(\sin A+\cos A)}{\sin A}

Taking LCM,

\implies\dfrac{\sin^2A(\sin A+\cos A)+\cos^2A(\sin A+\cos A)}{\sin A\cos A}

Taking (sin A + cos A) common,

\implies\dfrac{(\sin A+\cos A)(\sin^2A+\cos^2A)}{\sin A\cos A}

We  know that,

\hookrightarrow\sin^2\theta+\cos^2\theta=1

So,

\implies\dfrac{(\sin A+\cos A)(\sin^2A+\cos^2A)}{\sin A\cos A}

\implies\dfrac{(\sin A+\cos A)(1)}{\sin A\cos A}

\implies\dfrac{\sin A+\cos A}{\sin A\cos A}

Separating sin A + cos A,

\implies\dfrac{\sin A}{\sin A\cos A}+\dfrac{\cos A}{\sin A\cos A}

Cancelling like terms,

\implies\dfrac{1}{\cos A}+\dfrac{1}{\sin A}

We know that,

\hookrightarrow\dfrac{1}{\cos\theta}=\sec\theta

And,

\hookrightarrow\dfrac{1}{\sin\theta}=\csc\theta

So,

\implies\dfrac{1}{\cos A}+\dfrac{1}{\sin A}

\implies\bf sec\,A+csc\,A

= RHS

Hence Proved!!!

Similar questions