Math, asked by jaiho67, 11 months ago

sinA(1+tanA)+cosA(1+cotA)=secA+tanA​

Attachments:

Answers

Answered by saurabhsemalti
0

Answer:

proved

Step-by-step explanation:

sina(1+tana)+cosa(1+cota)

sina(1 +  \frac{sina}{cosa} ) + cosa(1 +  \frac{cosa}{sina} ) \\  = sina( \frac{sina + cosa}{cosa} ) + cosa( \frac{sina + cosa}{sina} ) \\  = (sina + cosa)( \frac{sina}{cosa}  +  \frac{cosa}{sina} ) \\  = (sina + cosa)( \frac{sin {}^{2}a + cos {}^{2} a }{sina \: cosa} ) \\  = (sina + cosa)( \frac{1}{sina \: cosa} ) \\  = ( \frac{sina}{sina \: cosa}  +  \frac{cosa}{sina \: cosa} ) \\  = ( \frac{1}{cosa}   +  \frac{1}{sina} ) \\  = sec \: a \:  +  \: cosec \: a

Similar questions