Math, asked by amanrao1415, 9 months ago

sinA (1+tanA)+cosA(1+coto)

Answers

Answered by wwwgmahak4375
1

Answer:secA+cosecA

I hope u will get the answer right

Attachments:
Answered by ITzBrainlyGuy
0

Question:

sinA(1 + tanA) + cosA(1 + cotA)

Used formulas:

sin²A + cos²A = 1

tanA = sinA/cosA

cotA = cosA/sinA

1/cosA = secA

1/sinA = cosecA

Answer:

 \sin(a) (1 +  \frac{ \sin(a) }{ \cos(a) } ) +  \cos(a) (1 +  \frac{ \cos(a) }{ \sin(a) } )

 \frac{ \sin(a)( \cos(a)   +  \sin(a)) }{ \cos(a) }  +  \frac{ \cos(a) ( \sin(a)  +  \cos(a)) }{ \sin(a) }

 \frac{ { \sin }^{2}(a)( \sin(a)   +  \cos(a) ) +  { \cos}^{2} (a)( \sin(a) +  \cos(a)  }{ \sin(a)  \cos(a) }

taking common sin(a) + cos(a)

  = \frac{ (\sin(a) +  \cos(a) )( { \sin}^{2} (a) +  { \cos}^{2}(a))  }{ \sin(a)  +  \cos(a) }

 =  \frac{ \sin(a) +  \cos(a)  }{ \sin(a) \cos(a)  }

 =  \frac{ \sin(a) }{ \sin(a)  \cos(a) }  +  \frac{ \cos(a) }{ \sin(a) \cos(a)  }

 =  \frac{1}{ \cos(a) }  +  \frac{1}{ \sin(a) }

 =  \sec(a)  +  \cosec(a)

Concepts used:

trigonometric identities

trigonometric ratios

Note:

If you have any doubts in using formula see in (used formulas

Similar questions