sinA+2sinA=1 then cosA+2cosA=?
Answers
Answer:
From the definition of sine:
−1≤sinx≤1 for all x∈R
Our starting condition sinA+sinB=2 therefore implies that sinA=sinB=1 .
This happens when A and B are π2 (plus or minus a multiple of 2π ):
A=π2+2kπ
B=π2+2hπ
where k,h∈Z.
Thus cosA+cosB=cos(π2+2kπ)+cos(π2+2hπ)=0+0=0.
or
CosA+SinA=√2CosA
SinA=√2CosA-CosA take it eq.1
SO, CosA-SinA
Putting the value of eq. 1
CosA-√2CosA+CosA
2CosA-√2CosA
√2(√2CosA-CosA)
Putting the value of eq.1
√2SinA
Step-by-step explanation:
Hello!!!!!!! I can answer this question:
So, 2 sinA = 2 - cosA
Squaring both sides:
(2 sinA)^2 = (2 - cosA)^2
4 (sinA)^2 = 4 + (cosA)^2 - 4 cosA
4 - 4 (cosA)^2 = 4 + (cosA)^2 - 4 cosA
4 - 4 (cosA)^2 - 4 - (cosA)^2 + 4 cosA = 0
4 cosA - 5 (cosA)^2 = 0
Case 1:
cosA = 0
Case 2:
4 - 5 cosA = 0
4 = 5cosA
cosA =4/5
As, (sinA)^2 + (cosA)^2 = 1
Case 1:
(sinA)^2 + 0^2 = 1
sinA = 1
Case 2:
(sinA)^2 +(4/5)^2 = 1
(sinA)^2 + (16/25) =1
(sinA)^2 = 1 - (16/25)
(sinA)^2 = 9/25
sinA = 3/5
Therefore, The values of sinA are 1 and 3/5 .
Hope you got it :-)