Math, asked by rajsingh24, 11 months ago

sinA=√3 , FIND cosecA, cosA, tanA. ​

Answers

Answered by Anonymous
36

{\red{\huge{\underline{\mathbb{Solution:-}}}}}

sinA = √3

→ sinA = √3/1

Height= √3

Hypotenuse= 1

We know that→

 \sin(A)  =  \frac{height}{hypotenuse}

 \csc(A) =  \frac{hypotenuse}{height}

So,

 \csc( A)  =  \frac{hypotenuse}{height}

Then ,

 \csc(A)  =  \frac{1}{ \sqrt{3} }

• We know that sin²A + cos²A = 1

 {sin}^{2} A  +  {cos}^{2} A = 1 \\  =   >  {( \sqrt{3}) }^{2}  +  {cos}^{2} A = 1 \\  =  > 3 +  {cos}^{2} A = 1 \\  =  >  {cos}^{2} A =  - 2 \\  =  > cosA =  \sqrt{ - 2}

 \tan(A)  =  \frac{height}{base}

Then,

tanA =  \frac{ \sqrt{3} }{ \sqrt{ - 2} }

★ Answer:-

 \csc(A)=  \frac{1}{ \sqrt{3} }

 \cos(A) =  \sqrt{ - 2}

 \tan(A) =  \frac{ \sqrt{3} }{ \sqrt{ - 2} }

Answered by Anonymous
3

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions