sinA=cos30° valculateA
Answers
Answered by
0
cos (a-b) = cosa*cos b + sin b*sin a
cos (a+b) = cosa*cos b - sin b*sin a
We'll put a = 30 and b = A.
cos (30+A) = cos 30*cos A - sin A*sin 30
cos (30-A) = cos 30*cos A + sin A*sin30
Now, we'll replace these in the original equation:
cos (30-A) - cos (30+A)
= cos 30*cos A + sin A*sin30 - (cos 30*cos A - sin A*sin 30)
= cos 30*cos A + sin A*sin30 - cos 30*cos A + sin A*sin 30
the cos30*cosA is subtracted so we are left with 2sinAsin30
sin 30 = 1/2, so 2sinAsin30 = 2sinA*(1/2) = sinA as 2*(1/2) = 1
cos (a+b) = cosa*cos b - sin b*sin a
We'll put a = 30 and b = A.
cos (30+A) = cos 30*cos A - sin A*sin 30
cos (30-A) = cos 30*cos A + sin A*sin30
Now, we'll replace these in the original equation:
cos (30-A) - cos (30+A)
= cos 30*cos A + sin A*sin30 - (cos 30*cos A - sin A*sin 30)
= cos 30*cos A + sin A*sin30 - cos 30*cos A + sin A*sin 30
the cos30*cosA is subtracted so we are left with 2sinAsin30
sin 30 = 1/2, so 2sinAsin30 = 2sinA*(1/2) = sinA as 2*(1/2) = 1
Answered by
1
sinA = cos 30°
sinA = √3/2
sinA = sin 60°
so, A = 60°
sinA = √3/2
sinA = sin 60°
so, A = 60°
Similar questions