sina+cosa=0 if a is in 4th quadrant then find sina and cosa
Answers
sinA + cosA=0
⇒sinA = -cosA
Dividing cosA to both sides :
⇒(sinA)/(cosA) = -1
⇒tanA = -1 ...(i)
Now,
We know, sec²A = 1 + tan²A
⇒sec²A = 1 + (-1)² [from (i)]
⇒sec²A = 1 + 1
⇒secA = |√2|
As sec is positive in the 4th quadrant, so the magnitude becomes positive.
secA = √2
So, cosA = 1/secA
⇒cosA = 1/√2
We know,
tanA * cosA = (sinA/cosA) * cosA = sinA
sinA = -1*1/√2
⇒sinA = -1/√2
ANSWER:
Given
- sinA + cosA = 0
- A is in 4th quadrant
- sinA = ? , cosA = ?
➔ sinA + cosA = 0
Simplifying the given equation
➔ sinA = - cosA
➔ sinA = - 1(cosA)
➔ sinA/cosA = -1
➔ tanA = -1
Using
tanA = ±√sec²A - 1
➔ √sec²A - 1 = - 1
➔ sec²A - 1 = (-1)²
➔ sec²A = 1 + 1
➔ sec²A = 2
➔ secA = √2
➔ 1/cosA = √2
➔ cosA = 1/√2
Given A is in 4 th quadrant then cos(-A) is +ve
➔ cosA = 1/√2
Using
cosA = ±√1 - sin²A
➔ √1 - sin²A = -1/√2
➔ 1 - sin²A = (- 1/√2)²
➔ 1 - sin²A = 1/2
➔ 1 - 1/2 = sin²A
➔ 1/2 = sin²A
➔ √1/2 = sinA
➔ sinA = 1/√2
Given A is in 4th quadrant then sinA is -ve
➔ sinA = -1/√2
A = - 45°
Hence, sinA = -1/√2 , cosA = 1/√2