Math, asked by haneeshakolisetty, 1 month ago

SinA = CosA ,0<A<90, then tanA + cotA =

answer this question..
#stay safe...don't forget to wear mask...​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:sinA = cosA

Consider,

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA}

\rm \:  =  \:\dfrac{ {sin}^{2}A +  {cos}^{2}A}{sinAcosA}

can be rewritten as

\rm \:  =  \:\dfrac{ {sin}^{2}A +  {sin}^{2}A}{sinA \times sinA}

\rm \:  =  \:\dfrac{2 {sin}^{2} A}{ {sin}^{2} A}

\rm \:  =  \:2

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Alternative Method : 02

Given that,

\rm :\longmapsto\:sinA = cosA

can be rewritten as

\rm :\longmapsto\:\dfrac{sinA}{cosA}  = 1

\bf\implies \:tanA = 1

Now, Consider

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:tanA + \dfrac{1}{tanA}

\rm \:  =  \:1 + 1

\rm \:  =  \:2

Hence,

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Alternative Method :- 03

Given that,

\rm :\longmapsto\:sinA = cosA

can be rewritten as

\rm :\longmapsto\:\dfrac{sinA}{cosA}  = 1

\rm :\longmapsto\:tanA = 1

\rm :\longmapsto\:tanA = tan45 \degree

\bf\implies \:A = 45 \degree

Now, Consider

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:tan 45 \degree + cot 45 \degree

\rm \:  =  \:1 + 1

\rm \:  =  \:2

Hence,

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Answered by XxitsmrseenuxX
3

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:sinA = cosA

Consider,

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:\dfrac{sinA}{cosA}  + \dfrac{cosA}{sinA}

\rm \:  =  \:\dfrac{ {sin}^{2}A +  {cos}^{2}A}{sinAcosA}

can be rewritten as

\rm \:  =  \:\dfrac{ {sin}^{2}A +  {sin}^{2}A}{sinA \times sinA}

\rm \:  =  \:\dfrac{2 {sin}^{2} A}{ {sin}^{2} A}

\rm \:  =  \:2

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Alternative Method : 02

Given that,

\rm :\longmapsto\:sinA = cosA

can be rewritten as

\rm :\longmapsto\:\dfrac{sinA}{cosA}  = 1

\bf\implies \:tanA = 1

Now, Consider

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:tanA + \dfrac{1}{tanA}

\rm \:  =  \:1 + 1

\rm \:  =  \:2

Hence,

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Alternative Method :- 03

Given that,

\rm :\longmapsto\:sinA = cosA

can be rewritten as

\rm :\longmapsto\:\dfrac{sinA}{cosA}  = 1

\rm :\longmapsto\:tanA = 1

\rm :\longmapsto\:tanA = tan45 \degree

\bf\implies \:A = 45 \degree

Now, Consider

\rm :\longmapsto\:tanA + cotA

\rm \:  =  \:tan 45 \degree + cot 45 \degree

\rm \:  =  \:1 + 1

\rm \:  =  \:2

Hence,

\bf\implies \:\boxed{ \tt{ \: tanA + cotA = 2}}

Similar questions