(sinA + cosA +1) (sinA -1 + cosA) (secA cosecA)=2 — prove this.
plz....plz...prove it
Capt713:
did u get solution for this?
Answers
Answered by
30
here is your attachment..
Attachments:
Answered by
1
EXPLANATION.
⇒ (sin A + 1 - cos A)(sin A - 1 + cos A)sec A * cosec A = 2.
As we know that,
⇒ secθ = 1/cosθ.
⇒ cosecθ = 1/sinθ.
⇒ sin²θ + cos²θ = 1.
⇒ cos²θ = 1 - sin²θ.
Now, we can write expression as,
⇒ [(sin A + cos A)² - (1)²]sec A x cosec A.
⇒ [sin²A + cos²A + 2sinAcosA - 1]sec A x cosec A.
⇒ [1 + 2sinAcosA - 1]sec A x cosec A.
⇒ [2sinAcosA]sec A x cosec A.
⇒ [2sinAcosA] x 1/(cos A x sin A).
⇒ 2.
Hence proved.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ).
cos2θ = 2cos²θ - 1 = 1 - 2sin²θ = cos²θ - sin²θ = (1 - tan²θ)/(1 + tan²θ).
tan2θ = 2tanθ/(1 - tan²θ).
sin3θ = 3sinθ - 4sin³θ.
cos3θ = 4cos³θ - 3cosθ.
tan3θ = (3tanθ - tan³θ)/(1 - 3tan²θ).
Similar questions