Math, asked by Capt713, 1 year ago

(sinA + cosA +1) (sinA -1 + cosA) (secA cosecA)=2 — prove this.
plz....plz...prove it


Capt713: did u get solution for this?

Answers

Answered by ScannerGoogle
30
here is your attachment..
Attachments:

Capt713: thnk you soo much
ScannerGoogle: welcome
Answered by amansharma264
1

EXPLANATION.

⇒ (sin A + 1 - cos A)(sin A - 1 + cos A)sec A * cosec A = 2.

As we know that,

⇒ secθ = 1/cosθ.

⇒ cosecθ = 1/sinθ.

⇒ sin²θ + cos²θ = 1.

⇒ cos²θ = 1 - sin²θ.

Now, we can write expression as,

⇒ [(sin A + cos A)² - (1)²]sec A x cosec A.

⇒ [sin²A + cos²A + 2sinAcosA - 1]sec A x cosec A.

⇒ [1 + 2sinAcosA - 1]sec A x cosec A.

⇒ [2sinAcosA]sec A x cosec A.

⇒ [2sinAcosA] x 1/(cos A x sin A).

⇒ 2.

Hence proved.

                                                                                                               

MORE INFORMATION.

Trigonometric ratios of multiple angles.

sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ).

cos2θ = 2cos²θ - 1 = 1 - 2sin²θ = cos²θ - sin²θ = (1 - tan²θ)/(1 + tan²θ).

tan2θ = 2tanθ/(1 - tan²θ).

sin3θ = 3sinθ - 4sin³θ.

cos3θ = 4cos³θ - 3cosθ.

tan3θ = (3tanθ - tan³θ)/(1 - 3tan²θ).

Similar questions