Math, asked by Ghast, 4 months ago

(sinA + cosA + 1)(sinA-1+ cosA) -secAxcosecA=2 prove​

Answers

Answered by Seafairy
182

Given :

{\sf{ (sin A + cos A + 1)(sin A - 1 + cos A) - sec A \times cosecA = 2  }}

To Prove :

\text{RHS = LHS}

Explanation :

{\textsf{We can prove the given equations using below identities}}

\sf{\rightarrow(a+b)(a-b)=a^2-b^2}

\sf{\rightarrow(a+b)^2 = a^2 + b^2 +2ab}

\sf{\rightarrow\cos ^2\theta + \sin ^2\theta = 1}

\sf{\rightarrow\sin \theta = \frac{1 }{\csc \theta}}

\sf{\rightarrow\cos \theta = \frac{1}{\sec \theta}}

Solution :

 {\sf{= (sinA + cosA +1)(sinA + cosA -1)- (secA \times cosec A)}}

 {\sf{= ((sin A + cos A)+1)((sin A+ cosA )-1)- (secA \times CosecA)}}

 {\sf{= ((sinA + cosA)^2 -1^2) (secA \times cosecA)}}

{\sf{(\because((a+b)(a-b)=a^2 - b^2 )) \:in \:which\:a = sinAcosA \:\&\: b = 1 ) }}

 {\sf{= ((sin^A + cos^2 A +2cosAsinA)-1) ( secA \times cosecA))}}

{\sf{(\because (a+b)^2 = (a^2+b^2+2ab)\: in\:which\:a=sinA\:\&\:b=cosA)}}

= {\sf{(1+2cosAsinA -1 )(secA\times cosecA)}}

= {\sf{2sinAcosA \times  secA \times cosecA}}

= {\sf{2 \times cosA \times sinA \times  \frac{1}{sinA}\times \frac{1}{cosA}}}

{\sf{(\because secA = \frac{1}{cosA} \: \&\:cosecA = \frac{1}{sinA})}}

= {\sf{\frac{2 \times sinA \times cosA}{sinA \times cosA}}} \implies 2

\sf{Hence\:\: proved}


Anonymous: Awes... Nice answer !!
Seafairy: Thank you :)
Anonymous: Amazing❤
Seafairy: Thank you :) and sorry too :(
Anonymous: Why sorry ??
Anonymous: Awesome~
Seafairy: Thank you :)
Anonymous: Great :)
Seafairy: thank you :)
Answered by SuitableBoy
84

{\large{\underbrace{\underline{\bf{Question:-}}}}}

Q)) Prove that :

 \rm \: (sin \: A + cos \: A + 1)(sin \: a - 1 + cos \: A) \times sec \: A  \times  cosec \: A = 2

 \\

{\large{\underbrace{\underline{\bf{Answer\;\checkmark}}}}}

 \\

 \bf \: LHS :  \\  \\    \rightarrow \sf \: (sin \: A + cos \: A + 1)(sin \: A - 1 + cos \: A) \times sec \: A \times cosec \: A \\  \\  \rightarrow \sf \:  \{( sin \: A + cos \: A) + 1 \} \{(sin \: A+ cos \: A) - 1 \} \times sec \: A \times cosec \: A \\  \\  \rightarrow \sf \:  \{ {(sin \: A + cos \: A)}^{2}  -  {1}^{2}  \}\times sec \: A \times cosec \: A \\  \\  \rightarrow \sf \:  \{    \blue{\underline{{sin}^{2}  \: A +  {cos}^{2}  \: A}} + 2sin \: A \times cos \: A - 1 \}  \times sec \: A \times cosec \: A\\  \\  \rightarrow \sf \:  \{ \cancel1 + 2sin \: A\times cos \: A -  \cancel1 \} \times sec \: A \times cosec \: A \\  \\  \rightarrow \sf \: 2sin \: A \times cos \: A \times sec \: A \times cosec \: A\\ \\ \rightarrow\sf\:2\times \cancel{sin\:A}\times\cancel{cos\:A}\times\frac{1}{\cancel{cos\:A}}\times\frac{1}{\cancel{sin\:A}}\\ \\ \sf\rightarrow 2\times1\times1 \\ \\ \colon\implies\:\underline{\boxed{\tt\pink{LHS=2=RHS}}}\:\rm\purple{Hence\:Proved}

 \\

_____________________________

 \\

{\underline{\underline{\rm{Formula\:Used:}}}}

{ \boxed{\begin{array}{  c }{ \sf \star \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  }\\ \\  { \sf  \star \:  {sin}^{2} \: \alpha  +  {cos}^{2} \:  \alpha  = 1  } \\  \\ { \star \sf \: cosec \:  \alpha  =  \dfrac{1}{sin \:  \alpha } }  \\  \\ { \star \sf \: sec \:  \alpha  =  \dfrac{1}{cos \:  \alpha } }\end{array}}}

 \\

{\underline{\underline{\rm{Know\:More:}}}}

 \boxed{ \begin{array}{c}{ \sf \:  \bull \:  {sin}^{2}  \:  \alpha  +  {cos}^{2}  \:  \alpha  = 1} \\  \\  \bull \sf \:  \:  {tan}^{2}   \:  \alpha  +  1  =  {sec}^{2} \:  \alpha  \\  \\  \bull \sf \:  \: 1 +  {cot}^{2}   \:  \alpha  =  {cosec}^{2} \:  \alpha   \\  \\  \bull \sf \:  \: cosec \:  \alpha  =  \dfrac{1}{sin \:  \alpha } \\  \\  \bull \sf \:  \: sec \:  \alpha  =  \dfrac{1}{cos \:  \alpha } \\  \\  \sf \bull \:  \: cot \:  \alpha  =  \dfrac{1}{tan \:  \alpha }   \end{array}}

 \\


Seafairy: oh that's good :)
Anonymous: Amazing Answer❤
SuitableBoy: Thanks :)
Anonymous: Perfect ! :D
SuitableBoy: Thank Ya' :)
Anonymous: Perfect !!
SuitableBoy: Thanks :)
Anonymous: Awesome!
SuitableBoy: Thank You `♡
Anonymous: :)
Similar questions