Math, asked by vishwajeetmane, 5 months ago

sinA-cosA+1/sinA+cosA-1=cosA/1-sinA​

Answers

Answered by SweetPoison07
10

Step-by-step explanation:

If θ be an acute angle, the values of sin θ and cos θ lies between 0 and 1 (both inclusive). The sine of the standard angles 0°, 30°, 45°, 60° ...

complete ur question

Answered by AestheticSky
10

Solution:-

L.H.S :-

\implies \sf\dfrac{SinA-CosA+1}{SinA+CosA-1}

\implies \sf\dfrac{\dfrac{SinA-CosA+1}{CosA}}{\dfrac{SinA+CosA-1}{CosA}}

\implies \sf\dfrac{TanA+SecA-1}{TanA-SecA+1}

\implies \sf\dfrac{TanA+SecA-(Sec²A-Tan²A)}{TanA-SecA+1}

\implies \sf\dfrac{TanA+SecA-(SecA+TanA)(SecA-TanA)}{TanA-SecA+1}

\implies \sf\dfrac{TanA+SecA[1-(SecA-TanA)}{TanA-SecA+1}

\implies \sf\dfrac{TanA+SecA(1-SecA+TanA)}{TanA-SecA+1}

\implies \sf TanA+SecA

\implies \sf\dfrac{SinA}{CosA}+\dfrac{1}{CosA}

\implies \sf\dfrac{SinA+1}{CosA}

\implies \sf\dfrac{1+SinA}{CosA}×\dfrac{1-SinA}{1-SinA}

\implies \sf\dfrac{1-Sin²A}{CosA(1-SinA)}

\implies \sf\dfrac{Cos²A}{CosA(1-SinA)}

\implies \sf\dfrac{CosA}{1-SinA} = R.H.S

Similar questions