sinA+cosA=1 to prove cosA-sinA= +-1
Answers
Answered by
1
Answer:
fbvvbbbbbbnnnnnnnnnnnbbb
Answered by
0
Answer:
To prove-cosA-sinA= +-1
Step-by-step explanation:
We have:
(cos A – sin A)(cos A – sin A) = cos A cos A + sin A sin A – 2 cos A sin A
(cos A + sin A)(cos A + sin A) = cos A cos A + sin A sin A + 2 cos A sin A
Thus,
(cos A – sin A)(cos A – sin A) + (cos A + sin A)(cos A + sin A)
= 2 cos A cos A + 2 sin A sin A = 2
If cos A + sin A = 1, we obtain
(cos A – sin A)(cos A – sin A) + 1 = 2, or
(cos A – sin A)(cos A – sin A) = 1, whence
cos A – sin A = ± 1
Similar questions