(sinA+cosA)^{2} =1+2sinA.cosA
Answers
Answer:
(sinA+cosA)^2=1+2sinA.cosA
=>Let (sinA+cosA) be m
=>x^2=1+2x =>x^2-2x-1=0 =>x^2-x+x-1=0 =>x(x-1)+1(x-1)=0 =>(x-1)(x+1)=0 =>But x is (sinA+cosA) =>(sinA+cosA-1)(sinA+cosA+1)
Step-by-step explanation:
To Prove : (sin A + cos A)² = 1 + 2sin A . cos A
Proof : L.H.S. = (sin A + cos A)²
• { Identity : (a + b)² = a² + b² + 2ab
Here, a = sin A, b = cos A }
→ (sin A)² + (cos A)² + 2(sin A)(cos A)
→ sin²A + cos²A + 2sin A . cos A
• { Identity : sin²A + cos²A = 1 }
→ (sin²A + cos²A) + 2sin A . cos A
→ 1 + 2sin A . cos A
= R.H.S.
Hence, proved !!
Other useful identities are :
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3a²b + 3ab² + b³
- (a - b)³ = a³ - 3a²b + 3ab² - b³
- 1 + tan²A = cot²A
- 1 + sec²A = cosec²A