Math, asked by ashokksingh085, 9 months ago

(sina+cosa)^2-(sina-cosa)^2​

Answers

Answered by Anonymous
0

★ To Find :

We have to find the value of (Sin a+ Cos a)² - (Sin a - Cos a)²

\rule{200}{1}

★ Solution :

We know that,

\Large{\star{\boxed{\sf{(a + b)^2 = a^2 + b^2 + 2ab}}}} \\ \Large{\star{\boxed{\sf{(a - b)^2 = a^2 + b^2 - 2ab}}}}

Where,

  • a is Sin a
  • b ia Cos a

___________[Put Values]

\tt{\implies Sin^2a + cos^2a + 2(Sin a)(Cos a) - \bigg( Sin^2a + cos^2a - 2(Sin a)(Cos a) \bigg)} \\ \\ \tt{\implies \cancel{Sin^2a} + \cancel{cos^2a} + 2Sin \: a.Cos \: a \cancel{- Sin^2a} \cancel{ - cos^2a} + 2Sin \ :a .Cos \: a} \\ \\ \tt{\implies 4Sin \: a . Cos \:a}

Similar questions