Math, asked by joji53, 1 year ago

sina+cosa√3,then prove that tanaa+cosa1​


rizinazizap: Hi
rizinazizap: How are you
rizinazizap: Fine thank you
abiramiragu: Hi
rizinazizap: Clear the question
rizinazizap: Once more pls
rizinazizap: Poyo
rizinazizap: Vaaa
abiramiragu: ??
abiramiragu: Where are you from

Answers

Answered by abiramiragu
1

Hiii baby

SinA + cosA = √3

Squaring on both sides we get,

(SinA + cosA)² = (√3)²

Sin²A + cos²A +2sinAcosA = 3

1 + 2sinAcosA = 3

2sinAcosA = 3-1

SinAcosA = 2/2

sinAcosA = 1......................(!)

tanA+cotA = 1

sinA/cosA + cosA/sinA = 1

sin²A + cos²A /sinAcosA = 1

1/sinAcosA = 1

sinAcosA = 1.....................(!!)

! = !!

thus tanA + cotA = 1

Answered by jasonwalkersanwig
0

SinA + cosA = √3

Squaring on both sides we get,

(SinA + cosA)² = (√3)²

Sin²A + cos²A +2sinAcosA = 3

1 + 2sinAcosA = 3

2sinAcosA = 3-1

SinAcosA = 2/2

sinAcosA = 1......................(!)

tanA+cotA = 1

sinA/cosA + cosA/sinA = 1

sin²A + cos²A /sinAcosA = 1

1/sinAcosA = 1

sinAcosA = 1.....................(!!)

! = !!

thus tanA + cotA = 1

Similar questions