sina+cosa√3,then prove that tanaa+cosa1
rizinazizap:
Hi
Answers
Answered by
1
Hiii baby
SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)
tanA+cotA = 1
sinA/cosA + cosA/sinA = 1
sin²A + cos²A /sinAcosA = 1
1/sinAcosA = 1
sinAcosA = 1.....................(!!)
! = !!
thus tanA + cotA = 1
Answered by
0
SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)
tanA+cotA = 1
sinA/cosA + cosA/sinA = 1
sin²A + cos²A /sinAcosA = 1
1/sinAcosA = 1
sinAcosA = 1.....................(!!)
! = !!
thus tanA + cotA = 1
Similar questions