Sina cosa/cosa(seca-coseca)*sin^2a-cos^2a/sin^3a+cos^3a=sina
Answers
Answered by
0
Given: The correct expression is
1 - sinA cosA/cosA(secA - cosecA).sin^2A - cos^2A / sin^3A + cos^3A = sinA
To find: Prove the given expression.
Solution:
- Now we have given:
1 - sinA cosA/cosA(secA - cosecA).sin^2A - cos^2A / sin^3A + cos^3A = sinA
- Consider LHS, we have:
1 - sinA cosA/cosA(secA - cosecA).sin^2A - cos^2A / sin^3A + cos^3A
- Converting all terms to sin and cos, we get:
1 - sinA cosA/cosA(1/cosA - 1/sinA) x (sinA + cosA)(sinA - cosA)/(sinA + cosA)(sin^2A + cos^2A - sinAcosA)
- Now simplifying it, we get:
( 1 - sinA cosA) / cosA (sinA - cosA/cosAsinA) x (sinA - cosA)/(1 - sinAcosA)
- Simplifying it again we get:
sin A
RHS
- Hence proved.
Answer:
So we have proved in solution part that
1 - sinA cosA/cosA(secA - cosecA).sin^2A - cos^2A / sin^3A + cos^3A = sinA
Similar questions