Math, asked by tanubhumkar, 9 months ago

sinA+cosA=m & sinA-cosA=n
then prove that m^2+n^2=2​

Answers

Answered by viajaypkawle67
0

m=cosA-sinA , m=cosA+sinA.

m

2

−n

2

m

2

+n

2

=

(cosA−sinA)

2

−(cosA+sinA)

2

(cosA−sinA)

2

(cosA+sinA)

2

=

(cosA−sinA+cosA+sinA)(cosA−sinA−cosA−sinA)

cos

2

A+sin

2

A−2cosAsinA+cos

2

A+sin

2

A+2cosAsinA

=

2cosA(−2sina)

1+1

=

−4cosAsinA

2

=

2

−1

secAcosA.

=

2cosAsinA

−1

=

2sin2A

−1

[∵sin2θ=2sinθcosθ]

=

1+tan

2

A

2tan4

−1

[∵sin2θ=

1+tan

2

θ

2tan

2

θ

]

=

2tanA

−(1+tan

2

A)

=

2

−1

(

tana

1

+

tanA

tan

2

A

)

=

2

−1

(cotA+tanA)

Answered by anweshaanu
2

sinA+cosA = m

m² =( sinA +cosA)²

= sin²A+2sinA.cosA + cos²A

= 1 + 2sinA.cosA.......................(i)

n² = (sinA-cosA)²

=sin²A-2sinAcosA +cos²A

=1 - 2sinA.cosA.........................(ii)

from equation (i) and (ii)

m²+ n² = 2 (proved)

hope it helps

mark as brainliest

Similar questions