Math, asked by irisrosewood6996, 1 year ago

SinA + cosA=mand sin^3A+cos^3A=n prove that m^3-3m+2n=0

Answers

Answered by Agastya0606
3

Given: sinA + cosA=m and sin^3A+cos^3A=n

To find: Prove that m^3-3m+2n=0

Solution:

  • Now we have given

                sinA + cosA = m

                sin^3A + cos^3A = n

  • expanding the term, we get:

                (sin A + cos A)(sin²A + cos²A - sinAcosA) = n

                (sin A + cos A)(sin²A + cos²A - sinAcosA ) = n...................(i)

  • Now we have sinA + cosA = m
  • Squaring on both sides, we get:

                sin²A + cos²A + 2 sinAcosA = m²

                sinAcosA = m²-1/2             ..................(ii)

  • Putting ii in i, we get:

                m x (1 - (m²-1)/2 )  = n

                m x (2-m^2+1 / 2) = n

                m x (3-m^2 / 2) = n

                3m - m^3 = 2n

  • Taking all the terms on one side, we get:

                m^3 - 3m + 2n = 0

Answer:

               So we have proved that m^3 - 3m + 2n = 0.

Answered by mugdha10
1

Refer to the above attachment for your ans.....

Mark as Brainliest!!!

Attachments:
Similar questions