SinA+CosA=P and SecA+CosecA=q
Show that p²q-2pq-q=0
Answers
Answer:
Step-by-step explanation:
Correct Question :-
SinA+CosA=P and SecA+CosecA=q
Show that p²q-2p-q=0
Given,
sinA + cosA = p
secA + cscA = q
To Prove :-
p²q-2p-q=0
Formula Required :-
sin²A + cos²A = 1
(a + b)² = a² + b² + 2ab
Solution :-
Taking L.H.S :-
p²q - 2pq - q
Substituting the values of both 'p' and 'q' :-
= (sinA + cosA)²(secA + cscA) - 2(sinA + cosA) - (secA + cscA)
= (sin²A + cos²A + 2sinAcosA)(secA + cscA) - 2[sinA + cosA ]- secA - cscA
[∴ (a + b)² = a² + b² + 2ab]
= (1 + 2sinAcosA)(secA + cscA) - 2sinA - 2cosA - secA - cscA
[ ∴ sin²A + cos²A = 1]
= [1(secA + cscA) + 2sinAcosA(secA + cscA)] - 2sinA - 2cosA - secA - cscA
= [secA + cscA + 2sinAcosAsecA + 2sinAcosAcscA] - 2sinA - 2cosA - secA - cscA
= [secA + cscA + 2sinAcosA×1/cosA + 2sinAcosA×1/sinA] - 2sinA - 2cosA - secA - cscA
= [secA + cscA + 2sinA + 2cosA] - 2sinA - 2cosA - secA - cscA
= secA + cscA + 2sinA + 2cosA - 2sinA - 2cosA - secA - cscA
= secA - secA + cscA - cscA + 2sinA - 2sinA + 2cosA - 2cosA
= 0
= R.H.S
Hence Proved.