Math, asked by adityaraj4, 1 year ago

sinA+cosA=P then sinA-cosA=?

Answers

Answered by sai393
8
square the first equation we get sin^2A+cos^2A+2sinAcosA=p^2 from this we get 2sinAcosA=p^2 -1 take it as equation 1 then square the given second equation we get sin^2A+cos^2A-2sinAcosA substitute equation 1 in 2 we get 1-(p^2 -1) square root the value then we get √(2-p^2)
Answered by jitumahi435
7

Given:

\sin A + \cos A = P             .......... (1)

Let \sin A - \cos A = x        .......... (2)

We have to find, the value of \sin A - \cos A = ?

Solution:

Squaring and adding equations (1) and (2), we get

(\sin A+\cos A)^2 + (\sin A-\cos A)^2 = P^2 + x^2

P^2 + x^2 = \sin^2 A+\cos^2 A+2\sin A\cos A + \sin^2 A+\cos^2 A-2\sin A\cos A

P^2 + x^2 = \sin^2 A+\cos^2 A + \sin^2 A+\cos^2 A

P^2 + x^2 = 2\sin^2 A+2\cos^2 A

P^2 + x^2 = 2(\sin^2 A+\cos^2 A)

Using the trigonometric identity:

\sin^2 A + \cos^2 A = 1

P^2 + x^2 = 2(1)

P^2 + x^2 = 2

x^2 = 2 - P^2

⇒ x = \sqrt{2-P^2}

\sin A - \cos A = \sqrt{2-P^2}

Thus, if \sin A + \cos A = P, then \sin A - \cos A = \sqrt{2-P^2} .

Similar questions