SinA+cosA=root3.then prove that tanA+cotA=1
Answers
Answered by
21
sinA+cosA=√3
Squaring both sides,
(sinA+cosA)²=3
or, sin²A+2sinAcosA+cos²A=3
or, 1+2sinAcosA=3
or, 2sinAcosA=3-1
or, 2sinAcosA=2
or, sinAcosA=1 -----------(1)
∴, tanA+cotA
=sinA/cosA+cosA/sinA
=(sin²A+cos²A)/sinAcosA
=1/sinAcosA
=1/1 [using (1)]
=1 (Proved)
Squaring both sides,
(sinA+cosA)²=3
or, sin²A+2sinAcosA+cos²A=3
or, 1+2sinAcosA=3
or, 2sinAcosA=3-1
or, 2sinAcosA=2
or, sinAcosA=1 -----------(1)
∴, tanA+cotA
=sinA/cosA+cosA/sinA
=(sin²A+cos²A)/sinAcosA
=1/sinAcosA
=1/1 [using (1)]
=1 (Proved)
Answered by
0
sinA+cosA = √3
squaring both sides
(sinA + cosA)² = 3
1+2sinAcosA = 3
2sinAcosA = 2
sinAcosA = 1
Now
tanA + cotA
=sinA/cosA + cosA/sinA
=sin²A+cos²A/sinAcosA
=1/sinAcosA
=1/1
=1
Similar questions