Math, asked by sandip31, 1 year ago

sinA+cosA/sinA-cosA + sinA-cosA/SinA+cosA=1/sin^2A-cos^2=2/1-2cos^2A=2sec^2A/tan^2A-1

Answers

Answered by Amanthelearner
34
if it helps u
Mark BRAINLIEST thank u
Attachments:
Answered by mysticd
5

 i) \frac{sinA+cosA}{sinA-cosA} +\frac{sinA-cosA}{sinA+cosA} \\= \frac{(sinA+cosA)^{2} + (sinA-cosA)^{2}}{(sinA-cosA)(sinA+cosA)}\\= \frac{2(sin^{2}A+cos^{2}A)}{sin^{2}A-cos^{2}A}

________________________

We know that,

  • 1) (a+b)² + (a-b)² = 2(+)
  • 2)(a-b)(a+b) = -
  • 3) sin²A + cos²A = 1

________________________

 = \frac{2}{sin^{2} A - cos^{2} A }\: ---(1)

 ii )  \frac{2}{sin^{2} A - cos^{2} A }\: [ From \:(1) ]

 = \frac{2}{1-cos^{2} A - cos^{2} A } \\= \frac{2}{1- 2cos^{2} A }\: --(2)

 iii ) \frac{2}{sin^{2} A - cos^{2} A } \: [ From \:(1) ]

/* Dividing numerator and denominator by cos² A , we get */

 = \frac{ \frac{2}{cos^{2} A}}{\frac{sin^{2}A}{cos^{2} A} - \frac{cos^{2}A}{cos^{2}A}}

 = \frac{2sec^{2} A}{ tan^{2} A - 1 } \: --(3)

 Hence \:proved

•••♪

Similar questions