Math, asked by AbhijnanRaj, 1 year ago

SinA - CosA/SinA+CosA + SinA +CosA/SinA -CosA = 2/2 Sin^2A -1​

Answers

Answered by prathyushkodhap65hy5
0

Answer:

Step-by-step explanation:

\frac{sinA - cosA}{sinA+cosA}  + \frac{sinA+cosA}{sinA-cosA}  = \frac{2}{2sinA^{2}-1 }

Rationalize the denominators

\frac{(sinA-cosA)(sinA-cosA) + (sinA+cosA)(sinA+cosA)}{(sinA+cosA)(sinA-cosA)}

\frac{(sinA-cosA)^2 + (sinA+cosA)^2}{(sinA^2-cosA^2)}

Expanding the equation

\frac{(sinA^2+cosA^2-2sinA.cosA)  +  (sinA^2+cosA^2-2sinA.cosA)}{sinA^2-cosA^2}

\frac{2sinA^2+2cosA^2}{sinA^2-cosA^2}

\frac{2(sinA^2+cosA^2)}{sinA^2-cosA^2}                             (sinA^2 + cosA^2 = 1)

Therefore,

\frac{2}{sinA^2-cosA^2}

now, cosA^2 = 1- sinA^2 substituting this in the above equation we get,

\frac{2}{sinA^2-(1-sinA^2)}

\frac{2}{sinA^2-1+sinA^2}

\frac{2}{2sinA^2-1} =  \frac{2}{2sinA^2-1}

hence LHS = RHS.

Similar questions