Math, asked by ishikahasnani, 11 months ago

SinA+cosA/sinA-cosA+sinA-cosA/sinA+cosA=2/sin^2A-1

Answers

Answered by sourya1794
5

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{blue}{..!!Hello Dear!!...}}}}{\bold{\huge{\blue{\underline{\red{...!!!!!A}\green{ns}\purple{wer}\orange{!!!!!...}}}}}}

━━━━━━━━━━━━━━━━━━━━━━

\huge\bold\red{{solution:-}}

\frac{sinA+cosA}{sinA-cosA}+\frac{sinA-cosA}{sinA+cosA}\\=\frac{(sinA+cosA)^{2}+(sinA-cosA)^{2}}{(sinA-cosA)(sinA+cosA)}

By algebraic identities,

{(a+b)}^{2}+{(a-b)}^{2}=2{(a}^{2}+{b}^{2})

(a-b)(a+b)={a}^{2}-{b}^{2}

{and}

[By Trigonometric identity

{sin}^{2}A+{cos}^{2}A=1

=\frac{2}{sin^{2}A-cos^{2}A}----------(1)

=\frac{2}{sin^{2}A-(1-sin^{2}A)}

By Trigonometric identity:

{cos}^{2}A=1-{sin}^{2}A

=\frac{2}{sin^{2}A-1+sin^{2}A}\\=\frac{2}{2sin^{2}A-1}---------(2)

=\frac{2}{2(1-cos^{2}A)-1}\\=\frac{2}{2-2cos^{2}A-1}\\=\frac{2}{1-2cos^{2}A}---------(3)

{Therefore},

\frac{sinA+cosA}{sinA-cosA}+\frac{sinA-cosA}{sinA+cosA}\\=\frac{2}{sin^{2}A-cos^{2}A}\\=\frac{2}{2sin^{2}A-1}\\=\frac{2}{1-2cos^{2}A}

⠀⠀⠀⠀\huge\bold\pink{{Sourya1794}}

⠀⠀⠀⠀ ⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━━━━━━━━

Similar questions