(SinA+cosecA)2+(cosA+secA)2
Answers
Answered by
1
Answer:
5+Cosec²A+Sec²A (or) 7+Cot²A+Tan²A
Step-by-step explanation:
(SinA+CosecA)²+(CosA+SecA)²
=Sin²A+Cosec²A+2SinACosecA+Cos²A+Sec²A+
2CosASecA
=Sin²A+Cosec²A+2×SinA×1/SinA + Cos²A+Sec²A+ 2CosA×1/CosA
Sin²A+Cosec²A+2+Cos²A+Sec²A+2
=4+Sin²A+Cos²A+Cosec²A+Sec²A
Sin²A+Cos²A=1
=4+1+Cosec²A+Sec²A
=5+Cosec²A+Sec²A
Cosec²A-Cot²A = 1
Cosec²A = 1+Cot²A.
Sec²A-Tan²A = 1
Sec²A = 1+Tan²A
Therefore,
5+Cosec²A+Sec²A
=5+ 1+Cot²A+ 1+Tan²A
=7+Cot²A+Tan²A
Similar questions