Math, asked by aliasad9008, 1 month ago

(sina+coseca) ²+(cosa+seca) ²=7+tan²a+cot²a​

Answers

Answered by Anonymous
14

TO PROVE :-

 \\  \sf \: (sinA +  {cosecA)}^{2}  + (cosA +  {secA)}^{2}  = 7 +  {tan}^{2}A  +  {cot}^{2}A  \\  \\

SOLUTION :-

 \\  \sf \: LHS = (sinA +  {cosecA)}^{2}  + (cosA +  {secA)}^{2}  \\  \\  \boxed{ \bf \:cosecA =  \dfrac{1}{sinA}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf \:secA =  \dfrac{1}{cosA} } \\  \\  \implies \sf \:  { \left(sinA +  \dfrac{1}{sinA}  \right)}^{2}  +  {\left( cosA +  \dfrac{1}{cosA} \right)}^{2}  \\

 \\  \implies \sf \:   {sin}^{2}A  +  {\left(  \dfrac{1}{sinA} \right)}^{2}  + 2( \cancel{sinA})\left( \dfrac{1}{ \cancel{sinA}}  \right) +  {cos}^{2}A  +  {\left( \dfrac{1}{cosA}  \right)}^{2}  + 2( \cancel{cosA})\left( \dfrac{1}{ \cancel{cosA}}  \right) \\

 \\  \implies \sf \:  {sin}^{2}A  +  \dfrac{1}{ {sin}^{2}A }  + 2 +  {cos}^{2}A  +  \dfrac{1}{ {cos}^{2}A }  + 2 \\  \\  \implies \sf \:  {sin}^{2}A  +  {cos}^{2}A  +  \dfrac{1}{ {sin}^{2}A }  +  \dfrac{1}{ {cos}^{2}A }  + 4 \\  \\  \boxed{ \bf \: {sin}^{2}A  +  {cos}^{2}A = 1  } \\

 \\  \implies \sf \: 1 +  \dfrac{ {sin}^{2}A +  {cos}^{2}A  }{ {sin}^{2}A. {cos}^{2}A  }  + 4 \\  \\  \implies \sf \: 5 +  \dfrac{1}{ {sin}^{2}A. {cos}^{2}A  }  \\  \\  \boxed{ \bf \:sinA =  \dfrac{1}{cosecA}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf \:cosA =  \dfrac{1}{secA}  } \\  \\  \implies \sf \: 5 + ( {cosec}^{2}A)  ( {sec}^{2}A ) \\

 \\  \boxed{ \bf \: {cosec}^{2}A = 1 +  {cot}^{2}A   } \:  \:  \:  \:  \:  \:  \boxed{ \bf \: {sec}^{2}A  = 1 +  {tan}^{2}A  } \\  \\  \implies \sf \: 5 + (1 +  {cot}^{2}A )(1 +  {tan}^{2}A ) \\  \\  \implies \sf \: 5 + 1 +  {tan}^{2}A  +  {cot}^{2}A  + ( {cot}^{2}A . {tan}^{2}A ) \\  \\  \boxed{ \bf \:  cotA = \dfrac{1}{tanA} } \\

 \\  \implies \sf \: 6 +  {tan}^{2}A  +  {cot}^{2}A  + \left(  \dfrac{1}{ \cancel{ {tan}^{2}A }} \right)(  \cancel{{tan}^{2}A }) \\  \\  \implies \sf \: 7 +  {tan}^{2}A  +  {cot}^{2}A  = RHS \:  \:  \:  \: (verified)

Answered by SugarCrash
80

Question :

To Prove :

 \\ \sf \: (sinA + {cosecA)}^{2} + (cosA + {secA)}^{2} = 7 + {tan}^{2}A + {cot}^{2}A \\

Solution :

 \\ \sf \: LHS = (sinA + {cosecA)}^{2} + (cosA + {secA)}^{2} \\ \\ \blue{ \boxed{ \bf \:sinA = \dfrac{1}{cosecA} } \: \: \: \: \: \: \: \: \: \: \boxed{ \bf \:cosA = \dfrac{1}{secA} }} \\ \\ \implies \sf \: { \left(sinA + \dfrac{1}{sinA} \right)}^{2} + {\left( cosA + \dfrac{1}{cosA} \right)}^{2} \\

\\ \implies \sf \: {sin}^{2}A + {\left( \dfrac{1}{sinA} \right)}^{2} + 2( \cancel{sinA})\left( \dfrac{1}{ \cancel{sinA}} \right) + {cos}^{2}A + {\left( \dfrac{1}{cosA} \right)}^{2} + 2( \cancel{cosA})\left( \dfrac{1}{ \cancel{cosA}} \right) \\

 \\ \implies \sf \: {sin}^{2}A + \dfrac{1}{ {sin}^{2}A } + 2 + {cos}^{2}A + \dfrac{1}{ {cos}^{2}A } + 2 \\ \\ \implies \sf \: {sin}^{2}A + {cos}^{2}A + \dfrac{1}{ {sin}^{2}A } + \dfrac{1}{ {cos}^{2}A } + 4 \\ \\ \blue{\boxed{ \bf \: {sin}^{2}A + {cos}^{2}A = 1 } }\\

\\ \implies \sf \: 1 + \dfrac{ {sin}^{2}A + {cos}^{2}A }{ {sin}^{2}A. {cos}^{2}A } + 4 \\ \\ \implies \sf \: 5 + \dfrac{1}{ {sin}^{2}A. {cos}^{2}A } \\ \\\blue{ \boxed{ \bf \:sinA = \dfrac{1}{cosecA} }} \: \: \: \: \: \: \: \: \: \: \: \: \: \blue{\boxed{ \bf \:cosA = \dfrac{1}{secA} }} \\ \\ \implies \sf \: 5 + ( {cosec}^{2}A) ( {sec}^{2}A )

 \\ \blue{\boxed{ \bf \: {cosec}^{2}A = 1 + {cot}^{2}A }} \: \: \: \: \: \: \blue{\boxed{ \bf \: {sec}^{2}A = 1 + {tan}^{2}A }} \\ \\ \implies \sf \: 5 + (1 + {cot}^{2}A )(1 + {tan}^{2}A ) \\ \\ \implies \sf \: 5 + 1 + {tan}^{2}A + {cot}^{2}A + ( {cot}^{2}A . {tan}^{2}A ) \\ \\ \blue{\boxed{ \bf \: tanA = \dfrac{1}{cotA} }} \\

\\ \implies \sf \: 6 + {tan}^{2}A + {cot}^{2}A + \left( \dfrac{1}{ \cancel{ {tan}^{2}A }} \right)( \cancel{{tan}^{2}A }) \\ \\ \implies \sf \: 7 + {tan}^{2}A + {cot}^{2}A

R.HS.

\huge \underline{Hence\: \: Proved }

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions