(sinA+cosecA)^2+(cosA+secA)^2=tan^2A+cot^2A+7. proof that LHS=RHS
Answers
Answered by
2
This is the required answer
Attachments:
Answered by
4
Hey !!
from LHS
(sinA+cosecA)² + (cosA + secA)²
=> sin²A + cosec²A + 2sinA×cosecA + cos²A + sec²A + 2cosA×secA
=> sin²A + cos²A + 2 ×sinA×1/sinA+ sec²A+cosec²A + 2×cosA×1/cosA
=> 1 + 2 + 1 + tan²A + 1 + cot²A + 2
=> 7 + cot²A + tan²A
=> tan²A + cot²A +7 RHS prooved
************************************
Hope it helps you !!
@Rajukumar111
from LHS
(sinA+cosecA)² + (cosA + secA)²
=> sin²A + cosec²A + 2sinA×cosecA + cos²A + sec²A + 2cosA×secA
=> sin²A + cos²A + 2 ×sinA×1/sinA+ sec²A+cosec²A + 2×cosA×1/cosA
=> 1 + 2 + 1 + tan²A + 1 + cot²A + 2
=> 7 + cot²A + tan²A
=> tan²A + cot²A +7 RHS prooved
************************************
Hope it helps you !!
@Rajukumar111
Similar questions