Math, asked by rajakumar07, 7 months ago

(sina - coseca)^2 + (cosa - seca) ^2 = tan^2a + cot^a -1 prove that​

Answers

Answered by pulakmath007
16

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

1+  { \cot}^{2} a  =   { \cosec}^{2} a

2.

1  +  { \tan}^{2} a  =  { \sec}^{2} a

TO PROVE

 {( \sin a -  \cosec a)}^{2}  +  {( \cos a -  \sec a)}^{2}  =    { \cot}^{2} a    +  { \tan}^{2} a  - 1

PROOF

 {( \sin a -  \cosec a)}^{2}  +  {( \cos a -  \sec a)}^{2}

 =  { \sin}^{2} a - 2 \times  \sin a \times  \cosec a +  { \cosec}^{2} a +  { \cos}^{2} a - 2 \times  \cos a \times  \sec a +  { \sec}^{2} a

 =  { \sin}^{2} a - 2  +  { \cosec}^{2} a +  { \cos}^{2} a - 2 +  { \sec}^{2} a

 =  { \sin}^{2} a   +  { \cosec}^{2} a +  { \cos}^{2} a +  { \sec}^{2} a - 4

 =  { \sin}^{2} a  +  { \cos}^{2} a +  { \cot}^{2} a    +  1  +  { \tan}^{2} a  + 1- 4

 =  1+  { \cot}^{2} a    +  1  +  { \tan}^{2} a  + 1- 4

 =    { \cot}^{2} a    +  { \tan}^{2} a  - 1

Similar questions