Math, asked by Nandukkn7046780, 9 months ago

(sina- coseca)(cosa-seca)=1/tana+cota​

Answers

Answered by brainlyaryan12
3

<body bgcolor="r"><font color =yellow>

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Answer}}}}}}}}

<marquee scrollamount = 700>✌️✌️✌️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

(Sin \theta- Cosec)(Cos-sec) = \frac{1}{Tan+Cot}

On solving LHS

=> (Sin \theta - \frac{1}{Sin})(Cos \theta - \frac{1}{Cos})

=> (\frac{Sin^2 - 1}{Sin})(\frac{Cos^2 -1}{Cos})

=> (\frac{-Cos^2}{Sin})(\frac{-Sin^2}{Cos})

=> (\frac{-Cos^2}{Sin} × \frac{-Sin^2}{Cos})

=> (-Cos×-Sin)

=> (Cos.Sin)

On solving RHS

\frac{1}{Tan + Cot}

=> \frac{1}{\frac{Sin}{Cos} + \frac{Cos}{Sin}}

=> \frac{1}{\frac{Sin^2+Cos^2}{Sin.Cos}}

=> \frac{Sin.Cos}{Sin^2+Cos^2}

=> \frac{Sin.Cos}{1}

=> Sin.Cos

\huge\orange{\fbox{\pink{\text{LHS=RHS }}}}

\huge{\purple{\bigstar{\blue{\text{Hope it helps...}}}}}

Similar questions