sinA/(cotA+cosecA) =2+sinA/(cotA - CosecA) proved it
Answers
Answered by
0
LHS =
sinA/(cotA+cosecA)
= (sinA)(cosecA-cotA)/(cosecA+cotA)(cosecA-cotA)
= (1-cosA)/(cosec2A-cot2A)
= (1-cosA)/1 = 1-cosA
RHS =
2+(sinA)/(cotA-cosecA)
= 2+(sinA)(cotA+cosecA)/(cotA-cosecA)(cotA+cosecA)
= 2+(cosA+1)/(cot2A-cosec2A)
= 2+(cosA+1)/(-1)
= 2-cosA-1
= 1-cosA
LHS=RHS=1-cosA
Hence proved
sinA/(cotA+cosecA)
= (sinA)(cosecA-cotA)/(cosecA+cotA)(cosecA-cotA)
= (1-cosA)/(cosec2A-cot2A)
= (1-cosA)/1 = 1-cosA
RHS =
2+(sinA)/(cotA-cosecA)
= 2+(sinA)(cotA+cosecA)/(cotA-cosecA)(cotA+cosecA)
= 2+(cosA+1)/(cot2A-cosec2A)
= 2+(cosA+1)/(-1)
= 2-cosA-1
= 1-cosA
LHS=RHS=1-cosA
Hence proved
Similar questions