Math, asked by mishrarojalin915, 2 months ago

Sina
dre
(05²2(4 1053 x=sinan)​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

The given integral

\rm :\longmapsto\:\displaystyle\int\tt  \sqrt{\dfrac{sinx}{  \:  \: {cos}^{2} x(4 {cos}^{3}x -  {sin}^{3}x) \:  \: }}  \: dx

Identities Used:-

\boxed{ \sf{ \:  \frac{sinx}{cosx} = tanx}}

\boxed{ \sf{ \:  \frac{1}{ {cos}x }  = secx}}

\boxed{ \sf{ \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}

\boxed{ \sf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \sf{ \: \displaystyle\int\tt  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1} \frac{x}{a}   + c}}

Let's solve the problem now!!

\rm :\longmapsto\:\displaystyle\int\tt  \sqrt{\dfrac{sinx}{  \:  \: {cos}^{2} x(4 {cos}^{3}x -  {sin}^{3}x) \:  \: }}  \: dx

\rm  \:  = \:\displaystyle\int\tt  \sqrt{\dfrac{sinx}{  \:  \: {cos}^{2} x \:  \times  {cos}^{3}x(4 -  {tan}^{3}x) \:  \: }}  \: dx

can be rewritten as

\rm  \:  = \:\displaystyle\int\tt  \sqrt{\dfrac{sinx}{  \:  \: {cos}x \:  \times  {cos}^{4}x(4 -  {tan}^{3}x) \:  \: }}  \: dx

\rm  \:  = \:\displaystyle\int\tt  \sqrt{\dfrac{tanx \times  {sec}^{4} x}{  \:  \: 4 -  {tan}^{3}x \:  \: }}  \: dx

\rm  \:  = \:\displaystyle\int\tt  \sqrt{\dfrac{tanx }{  \:  \: 4 -  {tan}^{3}x \:  \: }}  \:  {sec}^{2} x \: dx

\rm \:  =  \:  \: \displaystyle\int\tt \dfrac{ \sqrt{tanx}  \:  \: {sec}^{2} x}{ \sqrt{4 -  {tan}^{3} x} }  \: dx

Now, we use substitution method,

\rm :\longmapsto\:Put \:  {\bigg(tanx \bigg) }^{\dfrac{3}{2} }= y

On differentiating both sides, w . r. t. x, we get

\rm :\longmapsto\:\dfrac{3}{2} {(tanx)}^{ \dfrac{1}{2} }\dfrac{d}{dx}tanx = \dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{3}{2} \sqrt{tanx} {sec}^{2}x \: dx = dy

\rm :\longmapsto\: \sqrt{tanx} {sec}^{2}x \: dx = \dfrac{2}{3} dy

On substituting all these values, we get

\rm \:  =  \:  \: \dfrac{2}{3}\displaystyle\int\tt \dfrac{dy}{ \sqrt{4 -  {y}^{2} } }

\rm \:  =  \:  \: \dfrac{2}{3}\displaystyle\int\tt \dfrac{dy}{ \sqrt{ {2}^{2}  -  {y}^{2} } }

\rm \:  =  \:  \: \dfrac{2}{3} {sin}^{ - 1}\dfrac{y}{2} + c

\rm \:  =  \:  \: \dfrac{2}{3} {sin}^{ - 1}\dfrac{ {( \sqrt{tanx}) }^{3} }{2} + c

Hence,

\rm :\longmapsto\:\displaystyle\int\tt  \sqrt{\dfrac{sinx}{{cos}^{2} x(4 {cos}^{3}x -  {sin}^{3}x)}} dx = \dfrac{2}{3} {sin}^{ - 1}\dfrac{ {( \sqrt{tanx}) }^{3} }{2} + c

Additional Information :-

\boxed{ \sf{ \: \displaystyle\int\tt \dfrac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} }} = log \:  | \: x +  \sqrt{ {x}^{2}  -  {a}^{2} }  \: |  + c}}

\boxed{ \sf{ \: \displaystyle\int\tt \dfrac{dx}{ \sqrt{ {x}^{2}   +  {a}^{2} }} = log \:  | \: x +  \sqrt{ {x}^{2}   +  {a}^{2} }  \: |  + c}}

\boxed{ \sf{ \: \displaystyle\int\tt \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  = \dfrac{1}{a}  {tan}^{ - 1}  \frac{x}{a}  + c}}

Similar questions