Math, asked by samatha28, 9 months ago


sina= I√10 sinß = 1/√5 and
a,ß are acute then show that

a+ß= π\4​

Answers

Answered by sonal1305
3

{\huge{\underline{\sf {\pink{Answer}}}}}

\: \:

\sf {sin}^{2} \theta \: + \:   {cos}^{2} \theta = 1

\sf {cos}^{2} \theta = 1 -  {sin}^{2} \theta

\sf \: cos\theta \:  =  \sqrt{1 -  {sin}^{2}\theta }

\: \:

\sf \: cos \: a \:  =  \sqrt{1 -  {( \frac{1}{10} )}^{2} }  \\  =  \sqrt{1 -  \frac{1}{10} }  \\  =  \sqrt{ \frac{9}{10} }  \\   = \frac{3}{ \sqrt{10} }

\: \:

\sf \: cos \: b \:  =  \sqrt{1 -  {( \frac{1}{ \sqrt{5} } )}^{2} }  \\  =  \sqrt{1 -  \frac{1}{5} }  \\  =   \sqrt{ \frac{4}{5} }  \\  =  \frac{2}{ \sqrt{5} }

 \:  \:  \:

Finding sin( a + b),

= sin a cos b + cos a sin b

\sf \:  =  \frac{1}{ \sqrt{10} }  \times  \frac{2}{ \sqrt{5} }  +  \frac{3}{ \sqrt{10} }  \times  \frac{1}{ \sqrt{5} }

\sf =  \frac{2}{5 \sqrt{2} }  +  \frac{3}{5 \sqrt{2} }

\sf =  \frac{5}{5 \sqrt{2} }

\sf =  \frac{1}{ \sqrt{2} }

= sin 45°

\sf = sin \frac{\pi}{4}

Now,

\sf \: sin \: (a + b) = sin \frac{\pi}{4}

\sf \: a + b =  \frac{\pi}{4}

------- Proved

\: \:

{\huge{\underline{\sf {\pink{More \:\: Information :}}}}}

\: \:

  • sin ( a + b ) = sin a cos b + cos a sin b

  • sin ( a - b ) = sin a cos b - cos a sin b

  • cos ( a + b ) = cos a cos b - sin a sin b

  • cos ( a - b ) = cos a cos b + sin a sin b
Similar questions