(sinA+secA)² +(cosA+cosecA)² = (1+secA cosecA)²
anila:
i want the answer
Answers
Answered by
313
This is not 5 points question, because this is easy but yeah not that easy,
first of all lets do few things in advance
(1)

(2)

Proof;

![[sin^{2}A + cos^{2}A] + [\frac{1}{sin^{2}A} + \frac{1}{cos^{2}A}] + 2[\frac{sinA}{cosA} + \frac{cosA}{sinA}] \\ \\ [sin^{2}A + cos^{2}A] + [\frac{1}{sin^{2}A} + \frac{1}{cos^{2}A}] + 2[\frac{sinA}{cosA} + \frac{cosA}{sinA}] \\ \\](https://tex.z-dn.net/?f=+%5Bsin%5E%7B2%7DA+%2B+cos%5E%7B2%7DA%5D+%2B+%5B%5Cfrac%7B1%7D%7Bsin%5E%7B2%7DA%7D+%2B+%5Cfrac%7B1%7D%7Bcos%5E%7B2%7DA%7D%5D+%2B+2%5B%5Cfrac%7BsinA%7D%7BcosA%7D+%2B+%5Cfrac%7BcosA%7D%7BsinA%7D%5D+%5C%5C++%5C%5C)

first of all lets do few things in advance
(1)
(2)
Proof;
Answered by
187
Given,
Similar questions