Math, asked by atharvmangla2006, 9 months ago

(sinA+secA)²+(cosA+cosecA)²=(1+secAcosecA)²​

Answers

Answered by xicacim193
1

Answer:

I assume you want me to prove this? Okay so see the picture attached for the answer.

I have used the following properties, nothing else:

(a+b)^2 = a^2 + b^2+2ab

sin^2A+cos^2A=1

cosecA=1/sinA

secA=1/sinA

tanA=sinA/cosA

cotA=cosA/sinA

Hope it helps, I have not copied from anywhere and done on my own so please mark as brainliest:)

Attachments:
Answered by sandy1816
1

( {sinA + secA})^{2}  + (cosA + cosecA) ^{2}  \\  \\  = ( {sinA +  \frac{1}{cosA} })^{2}  + ( {cosA +  \frac{1}{sinA} })^{2}  \\   \\ =  {sin}^{2} A +  \frac{1}{ {cos}^{2} A}  + 2 \frac{sinA}{cosA}  +  {cos}^{2} A +  \frac{1}{ {sin}^{2} A}  + 2 \frac{cosA}{sinA}  \\  \\  = 1 + ( \frac{1}{ {sin}^{2}A }  +  \frac{1}{ {cos}^{2} A} ) + 2( \frac{sinA}{cosA}  +  \frac{cosA}{sinA} ) \\  \\  = 1 +  \frac{1}{ {sin}^{2} A {cos}^{2}A }  + 2 (\frac{1}{sinAcosA} ) \\  \\  = 1 +  {sec}^{2} A {cosec}^{2} A + 2secAcosecA \\  \\  = ( {1 + secAcosecA})^{2}

Similar questions