Math, asked by asksavvy6637, 1 year ago

(sinA+secA)2+(cosA+cosecA)2=(1+secAcosecA)2
Prove and explain it why we had done it like this?
Please help me

Answers

Answered by Shubhendu8898
2

Given,

(\sin A+\sec A)^{2}+(\cos A+cosecA)^{2}\\ \\=\sin^{2}A+\sec^{2}A+2\sin A\sec A+\cos^{2}A+cosec^{2}A+2\cos A.cosecA\\\\=\sin^{2}A+cos^{2}A+\sec^{2}A+2\sin A\sec A+cosec^{2}A+2\cos A.cosecA\\\\=1+\sec^{2}A+cosec^{2}A+2\sin A.\sec A+2\cos A.cosecA\\\\=1+\frac{1}{\cos^{2}A}+\frac{1}{\sin^{2}A}+\frac{2\sin A}{\cos A}+\frac{2\cos A}{\sin A}\\\\=1+\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A\cos^{2}A}+2(\frac{\sin^{2}A+\cos^{2}A}{\sin A\cos A})\\\\=1+\frac{1}{\sin^{2}A\cos^{2}A}+2(\frac{1}{\sin A\cos A})\\\\=1+cosec^{2}A.\sec^{2}A+2\times1\times\sec A.cosecA\\ \\=(1+\sec A.cosecA)^{2}\\\\\textbf{Hence,Proved}

Note:\\1.\sin^{2}A+\cos^{2}A=1\\\\2.\sin A=\frac{1}{cosecA}\\\\3.\cos A=\frac{1}{\sec A}\\\\4.(a+b)^{2}=a^{2}+b^{2}+ab

Answered by sandy1816
1

( {sinA + secA})^{2}  + (cosA + cosecA) ^{2}  \\  \\  = ( {sinA +  \frac{1}{cosA} })^{2}  + ( {cosA +  \frac{1}{sinA} })^{2}  \\   \\ =  {sin}^{2} A +  \frac{1}{ {cos}^{2} A}  + 2 \frac{sinA}{cosA}  +  {cos}^{2} A +  \frac{1}{ {sin}^{2} A}  + 2 \frac{cosA}{sinA}  \\  \\  = 1 + ( \frac{1}{ {sin}^{2}A }  +  \frac{1}{ {cos}^{2} A} ) + 2( \frac{sinA}{cosA}  +  \frac{cosA}{sinA} ) \\  \\  = 1 +  \frac{1}{ {sin}^{2} A {cos}^{2}A }  + 2 (\frac{1}{sinAcosA} ) \\  \\  = 1 +  {sec}^{2} A {cosec}^{2} A + 2secAcosecA \\  \\  = ( {1 + secAcosecA})^{2}

Similar questions