Math, asked by dannysunil, 1 year ago

SinA/secA+tanA-1+ cosA/cosecA+cotA-1=1

Answers

Answered by spiderman2019
0

Answer:

Step-by-step explanation:

 sinA/sec A+tanA-1+cosA/cosecA+cotA-1

=sinA/(1/cosA+sinA/cosA-1)+cosA/(1/sinA+cosA/sinA-1)

=sinA/{(1+sinA-cosA)/cosA}+cosA/{(1+cosA-sinA)/sinA}

=sinAcosA/(1+sinA-cosA)+sinAcosA/(1+cosA-sinA)

= sinAcosA (1/1+sinA-cosA + 1/1+cosA-sinA)

=sinAcosA[(1+cosA-sinA+1+sinA-cosA)/(1+sinA-cosA)(1+cosA-sinA)]

=2sinAcosA/(1+sinA-cosA+cosA+sinAcosA-cos²A-sinA-sin²A+sinAcosA)

=2sinAcosA/{1+2sinAcosA-(sin²A+cos²A)}

=2sinAcosA/(1+2sinAcosA-1)

=2sinAcosA/2sinAcosA

=1

= R.H.S

Hence proved.

Answered by sandy1816
0

Answer:

Your answer attached in the photo

Attachments:
Similar questions