Math, asked by yadavlakshay295, 8 months ago

SinA/secA+tanA-1+cosA/cosecA+cotA-1=1​

Answers

Answered by 11monish11
0

Answer:SinA/secA+tanA-1+cosA/cosecA+cotA-1=1​

Step-by-step explanation:

Answered by Anika186
0

\mathfrak{\huge{\green{\underline{\underline{Answer :}}}}}

sinA/secA+tanA-1+cosA/cosecA+cotA-1

=sinA/(1/cosA+sinA/cosA-1)+cosA/(1/sinA+cosA/sinA-1)

=sinA/{(1+sinA-cosA)/cosA}+cosA/{(1+cosA-sinA)/sinA}

=sinAcosA/(1+sinA-cosA)+sinAcosA/(1+cosA-sinA)

=sinAcosA[(1+cosA-sinA+1+sinA-cosA)/(1+sinA-cosA)(1+cosA-sinA)]

=2sinAcosA/(1+sinA-cosA+cosA+sinAcosA-cos²A-sinA-sin²A+sinAcosA)

=2sinAcosA/{1+2sinAcosA-(sin²A+cos²A)}

=2sinAcosA/(1+2sinAcosA-1)

=2sinAcosA/2sinAcosA

=1 (Proved)

Similar questions