Math, asked by rudray, 1 year ago

sina+sin(120+a)+sin(240+a) = 0

Answers

Answered by sawakkincsem
74
We have to prove that,
sin a + sin (120+a) + sin (240+a) = 0  .......... (1)
consider the left hand side of equation (1),
sin a + sin (120+a) + sin (240+a) = sin a + sin 120.cos a + cos 120.sina + sin 240.cosa + cos 240.sin a  (∵sin(a+b) = sina.cosb +cosa.sinb )
sin a + sin (120+a) + sin (240+a) = sin a + √3/2 . cos a + (-1/2) . sin a +
 (-√3/2) . cos a + (-1/2) . sin a 
 (∵sin120 = √3/2, sin240 = -√3/2) , (cos 120 = cos 240 = -1/2)
sin a + sin (120+a) + sin (240+a) = sin a + √3/2 . cos a - 1/2 . sin a 
-√3/2 . cos a - 1/2 . sin a 
sin a + sin (120+a) + sin (240+a) = sin a - [(1/2 + 1/2) . sin a]
sin a + sin (120+a) + sin (240+a) = sin a - (1) . sin a
sin a + sin (120+a) + sin (240+a) = sin a - sin a
sin a + sin (120+a) + sin (240+a) = 0
which is equal to right hand side of equation (1).
Hence proved.
Hope it will help you. Thanks.
Similar questions