Psychology, asked by shauryabhardwaj2003, 11 months ago

sinA+sin
2
A=1 and \displaystyle a \cos^{12} A + b \cos^8 A + c \cos^6 A - 1 = 0acos
12
A+bcos
8
A+ccos
6
A−1=0 then \displaystyle b+\frac{c}{a}+b = ?b+
a
c

+b=?

Answers

Answered by anubhardwaj168pbnnid
1

Answer:

sinA=1−sin  

2

A

\displaystyle \sin A = \cos^2 AsinA=cos  

2

A

\displaystyle \sin^2 A = \cos^4 Asin  

2

A=cos  

4

A

\displaystyle 1 - \cos ^2 A = \cos^4 A1−cos  

2

A=cos  

4

A

\displaystyle 1 = \cos^4 A + \cos^2 A1=cos  

4

A+cos  

2

A

\displaystyle 1^3 = (\cos^4 A + \cos^2 A)^31  

3

=(cos  

4

A+cos  

2

A)  

3

 by formula \displaystyle (a+b)^3(a+b)  

3

 

\displaystyle 1 = \cos^{12} A + 3 \cos^{10} A +3 \cos^8 A + \cos^6 A1=cos  

12

A+3cos  

10

A+3cos  

8

A+cos  

6

A

Transverse 1 onto the other side we get the condition as given as in the question. Comparing the variables we get \displaystyle a = 1a=1, \displaystyle b = 3b=3, \displaystyle c = 3c=3, \displaystyle d = 1d=1 hence the value of \displaystyle b +\frac{c}{a}+b = \frac{3 + 3}{1 + 1} = \frac{6}{2} = 3b+  

a

c

​  

+b=  

1+1

3+3

​  

=  

2

6

​  

=3:

Answered by spectatethe3
0

Answer:

sinA=1−sin  

2

A

\displaystyle \sin A = \cos^2 AsinA=cos  

2

A

\displaystyle \sin^2 A = \cos^4 Asin  

2

A=cos  

4

A

\displaystyle 1 - \cos ^2 A = \cos^4 A1−cos  

2

A=cos  

4

A

\displaystyle 1 = \cos^4 A + \cos^2 A1=cos  

4

A+cos  

2

A

\displaystyle 1^3 = (\cos^4 A + \cos^2 A)^31  

3

=(cos  

4

A+cos  

2

A)  

3

 by formula \displaystyle (a+b)^3(a+b)  

3

 

\displaystyle 1 = \cos^{12} A + 3 \cos^{10} A +3 \cos^8 A + \cos^6 A1=cos  

12

A+3cos  

10

A+3cos  

8

A+cos  

6

A

Transverse 1 onto the other side we get the condition as given as in the question. Comparing the variables we get \displaystyle a = 1a=1, \displaystyle b = 3b=3, \displaystyle c = 3c=3, \displaystyle d = 1d=1 hence the value of \displaystyle b +\frac{c}{a}+b = \frac{3 + 3}{1 + 1} = \frac{6}{2} = 3b+  

a

c

​  

+b=  

1+1

3+3

​  

=  

2

6

​  

=3:

Similar questions