Math, asked by AnshikaSrivastava, 1 day ago

sina + sinß + siny - sin(a + B + y) = 4 sin(a+b /2). sin (b+y/2 ).sin (y+a/2).​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt{ \green{sin( \alpha) +  sin(\beta) +  sin( \gamma )  -  \sin( \alpha  +  \beta  +  \gamma )  } }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \: cos \bigg( \dfrac{ \alpha  - \beta }{2}\bigg)  +  2  \: cos \bigg(  \dfrac{\gamma  +  \alpha  +  \beta  +  \gamma  }{2}\bigg) \: sin \bigg(  \dfrac{\gamma   -   \alpha   -  \beta   -   \gamma  }{2}\bigg)  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \: cos \bigg( \dfrac{ \alpha  - \beta }{2}\bigg)  +  2  \: cos \bigg(  \dfrac{  \alpha  +  \beta  +  2\gamma  }{2}\bigg) \: sin \bigg(  \dfrac{  -   \alpha   -  \beta   }{2}\bigg)  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \: cos \bigg( \dfrac{ \alpha  - \beta }{2}\bigg)   -   2  \: cos \bigg(  \dfrac{  \alpha  +  \beta  +  2\gamma  }{2}\bigg) \: sin \bigg(  \dfrac{    \alpha    +  \beta   }{2}\bigg)  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \: \bigg \{ cos \bigg( \dfrac{ \alpha  - \beta }{2}\bigg)   -   cos \bigg(  \dfrac{  \alpha  +  \beta  +  2\gamma  }{2}\bigg) \bigg \}  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[ - 2 \:sin \bigg \{ \dfrac{1}{2} \bigg(\dfrac{ \alpha  - \beta }{2} +   \dfrac{  \alpha  +  \beta  +  2\gamma  }{2}\bigg)  \bigg \} \:  sin \bigg \{ \dfrac{1}{2} \bigg(\dfrac{ \alpha  - \beta }{2}  -    \dfrac{  \alpha  +  \beta  +  2\gamma  }{2}\bigg)  \bigg \} \bigg ]  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[ - 2 \:sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{ \alpha  -  \beta  +   \alpha  +  \beta  +  2\gamma  }{2}\bigg)  \bigg \} \:  sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{ \alpha   - \beta   -  \alpha   -   \beta   -  2\gamma  }{2}\bigg)  \bigg \} \bigg ]  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[ - 2 \:sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{ \alpha   +   \alpha    +  2\gamma  }{2}\bigg)  \bigg \} \:  sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{   - \beta     -   \beta   -  2\gamma  }{2}\bigg)  \bigg \} \bigg ]  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[ - 2 \:sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{ 2  \alpha    +  2\gamma  }{2}\bigg)  \bigg \} \:  sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{   -2 \beta    -  2\gamma  }{2}\bigg)  \bigg \} \bigg ]  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[2 \:sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{ 2  \alpha    +  2\gamma  }{2}\bigg)  \bigg \} \:  sin \bigg \{ \dfrac{1}{2} \bigg(   \dfrac{   2 \beta    +  2\gamma  }{2}\bigg)  \bigg \} \bigg ]  }

 \sf{  =  2 \:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  \bigg[2 \:sin  \bigg(   \dfrac{   \gamma +  \alpha   }{2}\bigg)  \:  sin  \bigg(   \dfrac{    \beta    +  \gamma  }{2}\bigg)  \bigg ]  }

 \sf{  =  4\:  sin \bigg( \dfrac{ \alpha +\beta }{2}\bigg)  \:  sin  \bigg(   \dfrac{    \beta    +  \gamma  }{2}\bigg) \:sin  \bigg(   \dfrac{   \gamma +  \alpha   }{2}\bigg)     }

Similar questions