Math, asked by bulusupadmasri, 1 year ago

SinA+Sin2A=x,CosA+Cos2A=y then CosA=?.

Answers

Answered by pritamsonu00
9

Answer:

Step-by-step explanation:

we know the relations as

(1) Sin2A = 2*SinA*CosA

(2) Cos2A = Cos²A - Sin²A

(3) Sin²A + Cos²A = 1

So now,

SinA + Sin2A = x

or SinA + 2*SinA*CosA = x

or SinA*( 1 + 2CosA) = x

or ( 1 + 2CosA) = \frac{x}{SinA}

Now,

CosA + Cos2A = y

or CosA + Cos²A - Sin²A = y

or CosA + Cos²A - ( 1 - Cos²A) = y

or CosA + Cos²A - 1 + Cos²A = y

or CosA + 2Cos²A - 1 = y

or CosA*( 1 + 2CosA ) - 1 = y

or CosA* \frac{x}{SinA} - 1 = y

or \frac{x}{\frac{SinA}{CosA} } = y + 1

or \frac{x}{TanA} = y + 1

or TanA = \frac{x}{y+1}

we also know the relation

Sec²A - Tan²A = 1

so Sec²A - (\frac{x}{y+1})^{2} = 1

or Sec²A = 1 +  (\frac{x}{y+1})^{2}

or 1/Cos²A = {(y+1)² + x² }/(y+1)²

or Cos²A = (y+1)² / {(y+1)² + x² }

or CosA = ± (y+1) / √ {(y+1)² + x² }

(Answer)

Answered by SharadSangha
2

CosA = ± (y+1) / √ {(y+1)² + x² }

Given:

SinA+Sin2A=x

CosA+Cos2A=y

To Find:

CosA

Solution:

WKT;

  • Sin2A = 2*SinA*CosA
  • Cos2A = Cos²A - Sin²A
  • Sin²A + Cos²A = 1

So,

SinA + Sin2A = x

=> SinA + 2*SinA*CosA = x

=> SinA*( 1 + 2CosA) = x

=> ( 1 + 2CosA) = x/SinA

Now,

CosA + Cos2A = y

=> CosA + Cos²A - Sin²A = y

=> CosA + Cos²A - ( 1 - Cos²A) = y

=> CosA + Cos²A - 1 + Cos²A = y

=> CosA + 2Cos²A - 1 = y

=> CosA*( 1 + 2CosA ) - 1 = y

=> CosA*(x/SinA)  - 1 = y

=> x*CotA = y + 1

=> TanA = x/(y+1)

WKT;

Sec²A - Tan²A = 1

=> Sec²A  = 1 + (x/(y+1))^2

=> 1/Cos²A = {(y+1)² + x² }/(y+1)²

=> Cos²A = (y+1)² / {(y+1)² + x² }

=> CosA = ± (y+1) / √ {(y+1)² + x² }

#SPJ3

Similar questions