Math, asked by rishi4255, 1 year ago

sinA+sin3A/cosA+cos 3A=tan2A prove​

Answers

Answered by MaheswariS
12

\mathsf{\frac{sinA+sin\,3A}{cosA+cos\,3A}}

\textsf{Using}

\boxed{\mathsf{sin\,3A=3\,sin\,A-4\,sin^3A}}

\boxed{\mathsf{cos\,3A=4\,cos^3A-3\,cos\,A}}

=\mathsf{\frac{sinA+3\,sin\,A-4\,sin^3A}{cosA+4\,cos^3A-3\,cos\,A}}

=\mathsf{\frac{4\,sin\,A-4\,sin^3A}{4\,cos^3A-2\,cos\,A}}

=\mathsf{\frac{4\,sin\,A(1-sin^2A)}{2\,cosA(2\,cos^2A-1)}}

=\mathsf{\frac{4\,sin\,A\,cos^2A}{2\,cosA(2\,cos^2A-1)}}

=\mathsf{\frac{2\,sin\,A\,cos\,A}{2\,cos^2A-1}}

\textsf{Using}

\boxed{\mathsf{sin\,2A=2\,sin\,A\,cos\,A}}

\boxed{\mathsf{cos\,2A=2\,cos^2A-1}}

=\mathsf{\frac{sin\,2A}{cos\,2A}}

=\mathsf{tan\,2A}

\implies\boxed{\mathsf{\frac{sinA+sin\,3A}{cosA+cos\,3A}}=tan\,2A}

Similar questions