SinA / sinB = √2 and tanA / tanB =√3 find A and B if A and B acute angles hai
Answers
Answered by
0
A = 45°
B= 30°
sinA/sinB = √2
tanA/tanB = √3
( tanA= sinA/cosA)
⇒tanA/tanB = sinA/cosA÷sinB/cosB = √3
sinA/cosA × cosB/sinB
(sinA/sinB = √2)
⇒√2cosB/cosA =√3
⇒cosB/cosA=√3/√2
⇒√1-sin²B/√1-sin²A = √3/√2
⇒√1-sin²B/√1-2sin²B = √3/√2
⇒2(1-sin²B) =3(1-2sin²B)
⇒2-2sin²B =3-6sin²B
4sin²B=1
sin²B =1/4
sinB=±1/2
for acute angles
sinB =1/2 =sin30°
B=30°
sinA =sinB√2
sinA =√2/2
sinA=1/√2
A=45°
Similar questions