Math, asked by oviyaezhilvanan, 1 year ago

Sina+sinb=√3/√2
Cosa+cosb=1/√2
Find A

Answers

Answered by saurabhsemalti
7

( \sin(a)  +  \sin(b) ) {}^{2}  =  { \sin }^{2} a +  { \sin }^{2} b + 2 \sin(a)  \sin(b)  \\  {( \cos(a) +  \cos(b))  }^{2}  =  { \cos}^{2} a +  { \cos }^{2} b + 2 \cos(a)  \cos(b)  \\ add \\ ( \sqrt{3 \div 2}  { }^{2}  +  \sqrt{1 \div 2 {}^{2} } ) = (1) + (1) + 2( \sin(a)  \sin(b)  +  \cos(a)  \cos(b) ) \\ 2 = 2 + 2( \cos(a - b) ) \\  \cos(a - b)  = 0 \\ a - b = 90 \\  \\ a = 90 + b \\ it \: is \: given \: cosa + cosb = 1 \div  \sqrt{2}  \\ cos(90 - b) + cosb = 1 \div  \sqrt{2}  \\ 2cosb = 1 \div  \sqrt{2 }  \\ cosb = 1 \div (2 \sqrt{2)}  \\ cosa = 1 \div  \sqrt{2}  - cosb \\ cosa = (1 \div 2 \sqrt{2} ) \\ a = cos ^{ - 1} (1 \div 2 \sqrt{2)}
here is complete solution... I think there was problem in question in sina+sinb=.√3/2
Similar questions