Sina/sinb=√3/2, cosa/cosb=√5/2. Than find 5tan
Answers
The complete question is:
Sina/sinb=√3/2, cosa/cosb=√5/2. Than find tan a + tan b.
Given:
(i) Sin a /sin b=√3/2
(ii) cos a / cos b = √5/2
To find:
(i) tan a + tan b
Solution:
Given,
sin a/ sin b = √3/2
⇒ sin a = (√3sin b)/2 ...(1)
cos a / cos b = √5/2
⇒ cos a = (√5cos b)/2 ...(2)
Squaring (1) and (2) and then adding them, we get
sin² a + cos² a = 3 sin²/4 + 5 cos² b/4
We know the identity, sin² x + cos² x = 1, so,
3 sin² b/4 + 5 cos² b/4 = 1
⇒ 3 sin² b + 5 cos² b = 4 ...(3)
As cos² b = 1 - sin² b
So, replacing it in (3), we get,
3 sin² b + 5 (1 - sin² b) = 4
⇒ 5 - 2 sin² b = 4
⇒ 2 sin² b = 1
⇒ sin² b = 1/2
⇒ sin b = 1/√2
cos² b = 1 - sin² b
= 1 - 1/2
= 1/2
So, cos b = 1/√2
tan b = sin b / cos b = (1/√2)/(1/√2) = 1
So, tan b = 1
Now, sin a = √3/2(sin b)
= √3/2 (1/√2)
= √3/(2√2)
= √6/4
Again, cos a = √5/2(cos b)
cos a = √5/2(1/√2)
= √10/4
tan a = sin a / cos a
= (√6/4)/(√10/4)
= √(6/10)
= √(3/5)
tan a = √(3/5)
So, tan a + tan b = 1 + √(3/5)
So, the answer is 1 + √(3/5)