Math, asked by sovanlalmukherjee44, 1 month ago

sinA+SinB=a, CosA+CosB=b prove that sin(A+B)=2ab/(a^2+b^2)

Answers

Answered by tabrezkhan1409
0

answer:-

Sin(A+B)= 2ab/ a^2+b^2

Sin(A+B) = sin A cos B +CosA SinB

Cos(A+B) = cos A cosB + SinA SinB

Finding a^2 +b^2 (1)

a^2 +b^2= sin^2A +sin^2B +2sinA SinB + Cos^2A +Cos^2B + 2Cos A Cos B

= 1+1 +2 ( CosA CosB + SinA SinB )

=2+2( CosA cos B +sinA SinB)

a^2+b^2 --2 =2 Cos(A-B) )

Cos (A-B) = (a^2+b^2 )/2 --1 (1)

Finding values of ab (2)

2ab =2 (sinA +SinB ) (CosA +CosB)

= 2 [ sinA CosA + SinA cos B + SinB Cos A + SinB Cos B]

2ab= 2 (1+ Cos A CosB + SinA SinB )

ab= [1+ cos(A --B)]

ab=1 +(a^2+b^2)/2 --1 from (1)

ab=( a^2+b^2)/2

Hence sin(A+B) = 2ab /a^2+b^2

LH S =R H S

Formulae used ::

1 )sin^2A + cos^2A = 1

2 )Cos ( A -B) = CosA Cos B + SinA SinB

Problem solving skills::

1 0bservation of relation ship

2 Finding a^2 + b^2

3 Finding answer

4 Recollecting formula and previous steps

Formulae 1 )sin^2A +Cos^2A =1

Cos (A +B)

Time for solving 20 to 25 minutes

TIME Varies by practice hours spent By You

Suggestion

DO MATHEMATICS SUMS DAILY

Similar questions