Math, asked by arjuns5, 1 year ago

sinA+sinB /cos A +cos B = tan (A+B/2)prove it

Answers

Answered by Sharad001
64

Question :-

Prove it :

 \tt \frac{ \sin A+ \sin B }{ \cos A + \cos B}  =  \tan \bigg(\frac{A+ B  }{2}  \bigg) \\

Used Formula :-

 \star  \: \tt\sin C + \sin D   = 2 \sin \bigg( \frac{ C + D }{2} \bigg) . \cos \: \bigg(  \frac{ C  -  D }{2} \bigg)  \\ \\   \star  \: \tt\cos C + \cos D   = 2 \cos \bigg( \frac{ C + D }{2} \bigg) . \cos \: \bigg(  \frac{ C  -  D }{2} \bigg)  \\

Explanation :-

Taking left hand side

 \to \: \tt \frac{ \sin A+ \sin B }{ \cos A + \cos B} \:  \\ \\   \sf \: apply \: the \: given \: formula \ \\ \\  \to   \tt\frac{ \cancel{2} \sin \bigg( \frac{ A+ B  }{2} \bigg) . \cancel{ \cos \: \bigg(  \frac{A -  B   }{2} \bigg)}}{ \cancel{2} \cos\bigg( \frac{  A+ B }{2} \bigg) .  \cancel{ \cos \: \bigg(  \frac{  A -  B }{2} \bigg)} \: }  \\  \\  \to \tt  \frac{\sin \bigg( \frac{ A+ B  }{2} \bigg) }{\cos \bigg( \frac{ A+ B  }{2} \bigg)}  \\  \\ \boxed{ \tt  \because \tan \theta =  \frac{ \sin \theta}{ \cos \theta} } \\  \\  \to \: \tan \bigg( \frac{ A+ B  }{2} \bigg) \:

→ LHS = RHS

Hence proved .

Similar questions