[(sinA+sinB)/(cosA-cosB)]+[(cosA+cosB)/(sinA-sinB)]
Answers
Answered by
1
Answer:
[(sinA +sinB) /(cosA - cosB)] +[(cosA +cosB) /sinA-sinB)] =0
Step-by-step explanation:
=(sinA+sinB) (sinA-sinB) +(cosA+cosB)(cosA-cosB)/
(cosA-cosB) (sinA-sinB)
=sin^2 A-sin^2 B + cos^2 A-cos^2B/
(cosA-cosB) (sinA-sinB)
=sin^2 A +cos^2 A-(sin^2 B+cos^2 B) /
(cosA-cosB) (sinA-sinB)
= 1 - 1/
(cosA-cosB) (sinA-sinB)
= 0
NOTE:- 1) sin^2A-sin^2B =(sinA-sinB) (sinA+sinB)
2)cos^2A-cos^2B=(cosA-cosB)(cosA+cosB)
3)sin^2A+cos^2A=1
4)sin^2B+cos^2B=1
It will help you.....
Please, mark me as brainlist.......
Similar questions