Math, asked by sabihaadeeb123, 1 year ago

SinA÷ sinB=p and cosA÷cosB=q,. Then find tanA

Answers

Answered by csk171965
0

Answer:


Step-by-step explanation:

SinA/sinB=p

SinA=psinB


cosA/cosB=q

CosA=qcosB


TanA=sinA/cosA

TanA=psinB/qcosB

TanA=tanB.p/q

Answered by FuturePoet
5

Hi!

__________________________________

Given :

\frac{SinA}{SinB} = P

SinA = P SinB -----> 1

\frac{CosA}{CosB} = q

CosA = q CosB -----> 2

Dividing Equation (1) and (2)

\frac{SinA}{CosA} = \frac{P}{q} \frac{SinB}{CosB}

tanA = \frac{P}{q} * tanB

\frac{tanA}{P} = \frac{tanB}{q} = K

tanA = PK , tanB = qK

From eq (1)

SinA = P SinB

Squaring Both Sides

Sin^2A = P^2 Sin^2B

\frac{1 -Cos2 A}{2} = P^2\ \frac{1 - Cos2B}{2}

=> ( 1 - Cos2A ) = P^2 (1 - Cos2B )

Cos2\theta = \frac{1 - tan^2 \theta }{1 + tan^2 \theta`}

=> (1 - \frac{1- - tan^2A}{1 + tan^2A} ) = P^2 (1 - \frac{1 - tan^2B}{1 + tan^2B} )

=> ( \frac{2tan^2A}{1 + tan^2 A} )= P^2 ( \frac{2 tan^2B}{1 + tan^2B} )

=> \frac{2 * P^2 K^2 }{1 + P^2 K^2 } = P^2 ( \frac{2q^2 k^2 }{1 + q^2k^2} )

=> \frac{1}{1 + p^2k^2} = \frac{q^2}{1 + q^2k^2}

=> 1 + q^2 k^2 = q^2 + p^2q^2k^2

=> 1 - q^2 = p^2q^2k^2 - q^2k^2

=> 1 - q^2 = q^2k^2 ( p^2 -1 )

=> k^2 = \frac{1}{q^2} \ ( \frac{1 - q^2 }{p^2 - 1 } )

=> k = \frac{1}{q} \ \sqrt{\frac{1 - q^2}{p^2 - 1 } }

=> tanA = pk => \frac{P}{q} \ \sqrt{\frac{1 -q^2 }{p^2- 1} }

⇒ tanB = qk => \frac{q}{q} \ \sqrt{\frac{1 -q^2 }{p^2 - 1 } }

q\q get Cancel out

We have ,

=> tanB =\sqrt{\frac{1 -q^2 }{p^2 - 1 }

=> tanA = pk => \frac{P}{q} \ \sqrt{\frac{1 -q^2 }{p^2- 1} }

___________________________________________

Thanks !!




Similar questions