Sina+sinb+sinc=1/√2 and cosa+cosb+cosc=√2 then the triangle is
Answers
Answered by
7
Given, sin A + sin B + sin C = 1 + √2 ..........1
cos A + cos B + cos C = √2 ........2
This is only possible, when the angles are in the form
90° , 45° and 45°
Let A = 90° , B = 45° and C = 45°
Now, sin A + sin B + sin C = sin 90° + sin 45° + sin 45°
= 1 + 1/√2 + 1/√2
= 1 + 2/√2
= 1 + (√2 * √2)/√2
= 1 +√2
Again, cos A + cos B + cos C = cos 90° + cos 45° + cos 45°
= 0 + 1/√2 + 1/√2
= 2/√2
= (√2 * √2)/√2
= √2
Since, one of the angle is 90° , So the triangle is right angle triangle.
cos A + cos B + cos C = √2 ........2
This is only possible, when the angles are in the form
90° , 45° and 45°
Let A = 90° , B = 45° and C = 45°
Now, sin A + sin B + sin C = sin 90° + sin 45° + sin 45°
= 1 + 1/√2 + 1/√2
= 1 + 2/√2
= 1 + (√2 * √2)/√2
= 1 +√2
Again, cos A + cos B + cos C = cos 90° + cos 45° + cos 45°
= 0 + 1/√2 + 1/√2
= 2/√2
= (√2 * √2)/√2
= √2
Since, one of the angle is 90° , So the triangle is right angle triangle.
omkar81:
if this helps u mark this as brainliest question
Similar questions